Lecture 6: Manifold Regularization

نویسنده

  • Andrea Caponnetto
چکیده

We first analyze the limits of learning in high dimension. Hence, we stress the difference between high dimensional ambient space and intrinsic geometry associated to the marginal distribution. We observe that, in the semi-supervised setting, unlabeled data could be used to exploit low dimensionality of the intrinsic geometry. In order to formalize these intuitions we briefly introduce the manifold Laplacian and Graph Laplacian. Finally, we introduce a new class of regularization algorithms, aimed at enforcing smoothness relative to the intrinsic geometry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Kernel for Semi-Supervised Learning With Multi-View Point Cloud Regularization

In semi-supervised learning (SSL), we learn a predictive model from a collection of labeled data and a typically much larger collection of unlabeled data. These lecture notes present a framework called multi-view point cloud regularization (MVPCR) [5], which unifies and generalizes several semi-supervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbe...

متن کامل

Multi-View Point Cloud Kernels for Semi-Supervised Learning

In semi-supervised learning (SSL), we learn a predictive model from a collection of labeled data and a typically much larger collection of unlabeled data. These lecture notes present a framework called multi-view point cloud regularization (MVPCR) [5], which unifies and generalizes several semi-supervised kernel methods that are based on data-dependent regularization in reproducing kernel Hilbe...

متن کامل

Sparsity Based Regularization

In previous lectures, we saw how regularization can be used to restore the well-posedness of the empirical risk minimization (ERM) problem. We also derived algorithms that use regularization to impose smoothness assumptions on the solution space (as in the case of Tikhonov regularization) or introduce additional structure by confining the solution space to low dimensional manifolds (manifold re...

متن کامل

Learning Multiple Tasks using Manifold Regularization

We present a novel method for multitask learning (MTL) based on manifold regularization: assume that all task parameters lie on a manifold. This is the generalization of a common assumption made in the existing literature: task parameters share a common linear subspace. One proposed method uses the projection distance from the manifold to regularize the task parameters. The manifold structure a...

متن کامل

Manifold Regularization for SIR with Rate Root-n Convergence

In this paper, we study the manifold regularization for the Sliced Inverse Regression (SIR). The manifold regularization improves the standard SIR in two aspects: 1) it encodes the local geometry for SIR and 2) it enables SIR to deal with transductive and semi-supervised learning problems. We prove that the proposed graph Laplacian based regularization is convergent at rate root-n. The projecti...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006